氢气具有清洁、质量 / 能量密度高的优点,是一种高效的能量载体;在高碳排放工业、电力领域中替代煤炭、天然气等化石燃料,应用前景十分广阔。发展具有波动性负荷跟随能力的质子交换膜(PEM)电解水技术,是实现可再生能源耦合电解水制氢、促进可再生能源消纳的有效途径。
中国工程院院刊《中国工程科学》2023年第6期刊发北京智慧能源研究院高级工程师彭笑东研究团队的《风光波动电源下质子交换膜电解水制氢技术发展与应用》一文。文章围绕风光波动电源下电解水高效制氢技术的发展与应用,从风光波动特性及制氢方式、PEM电解水制氢特性及衰减机制、制氢应用现状、关键技术研发等方面,系统探讨风光波动电源耦合制氢存在的问题,以期为相应技术发展和产业应用研究提供基础参考。
四、PEM电解槽核心技术研发与PEM电解槽制氢技术发展方向
(一)PEM电解槽技术研发
风光电力制氢的功率波动范围较大,对制氢装置产生的不利影响表现为大幅降低装备寿命、影响制成氢气的纯度,这些影响源自风光波动电源工况下PEM电解槽主要部件的衰减。从技术角度看,PEM电解槽面临的主要挑战是如何通过材料研发、组装工艺及优化等提升工作性能与稳定性。先进材料研发包括催化层和黏合材料、防腐蚀双极板、有机离子交换膜等方向。电解槽部件组装工艺及优化主要有膜电极制备方式优化、电解槽装配预紧力优化、膜电极 / 电解槽温度和热应力分布优化、流道优化等,近年来以膜电极作为PEM电解槽的重点研究方向。
围绕电解槽催化剂、交换膜、双极板等主要部件,开展催化剂研发的主要途径有:通过二元或多元金属复合掺杂,提高催化剂的活性和稳定性;选择耐氧化、比表面高的材料作为催化剂载体,提高催化剂的利用率和活性;设计新型结构催化剂,如核壳结构、纳米阵列等。目前主要使用的交换膜中,杜邦全氟磺酸质子膜居多,陶氏化学、3M、戈尔、日本旭硝子等品牌的短链全氟磺酸质子膜也有应用。为了提高交换膜的稳定性,通常采用聚芳烯类聚合物对膜进行强化改性,使用催化材料对隔膜进行修饰,以降低产物气体交叉。双极板成本占电解槽的50%以上,通常配置贵金属涂层以提高耐腐蚀性。未来降低制造成本的工作主要围绕新型低成本的双极板材料、表面处理工艺展开。
在组件组装工艺及优化方面,目前研究主要有阴 / 阳极非对称设计、连接卡位优化电解组件固定等。为了适应波动电源,一些研究探讨了电解槽中水流量变化、供水管路分布、膜电极结构对两侧气体渗透、温度及压力变化、电流密度等的影响。对于电解槽核心部件,目前最常用的催化剂涂覆膜工艺主要有超声喷涂法、卷对卷涂布法:相比前者,后者采用一次性涂覆催化剂层,可以更快得到更厚、更均匀的涂层,适应膜电极批量生产需求。为了避免装配产生的穿刺、开裂、机械应力、不充分的湿化与反应压力,通常在设计膜电极及其夹紧过程时充分研究所用材料特性,基于实验装置开展装载测试。
在频繁启停及风光波动电源下评估组件寿命,需要通过加速测试获得更多数据以提高电堆部件的耐用性,这是当前研发的另一类挑战。然而,PEM电解槽组件还没有标准化的加速衰减测试协议,电堆部件组分的降解率难以衡量,导致已有研究结果难以开展直接对比。建立标准化的PEM电解槽加速衰减测试协议,是当下关键技术研发亟待解决的瓶颈问题。
近年来,PEM电解槽各关键部件的技术研发都取得了显著进展。根据我国电解水制氢的技术路线,当前PEM电解槽关键技术指标为:效率约为63%,寿命约为6×104 h,成本约为1万元/kW。预计到2030年,PEM电解槽关键技术指标为:效率达到78%,寿命达到1×105 h,成本降至4000元/kW。
(二)PEM电解槽制氢技术发展方向
风光电力制氢的原理是完成风 / 光能向电力的转换,进而通过电解槽将电能转化为氢能。目前主要有4种电解水技术,以碱性电解水技术最为成熟、成本最低,已经进入商业化发展阶段;但PEM电解水技术发展迅猛,风光电力适配性良好,将是未来可再生能源电力制氢的首选方向。
目前,主要的风光耦合制氢方式有离网型和并网型。并网型制氢虽然克服了制氢电源的波动性问题,但存在电价高、电网通道受限的问题。离网方式将单台或多台风力机所发的电能(不经过电网)提供给电解水制氢设备进行制氢,适用于风资源良好但消纳受限的地区,具有稳健的商业模式和广阔的发展前景;主要应用于分布式制氢,局部应用于燃料电池发电供能。
与离网制氢类似,非并网制氢是另一种有效的制氢途径,省去了并网所需的大量辅助设备(如变流 / 变压器、滤波系统),成本相比并网制氢大幅降低。非并网制氢采用直流电,有效规避交流电上网带来的相位差、频率差问题,简化系统并节省成本。值得指出的是,相对于离 / 并网制氢,非并网风光电解水制氢将风光电力直接与PEM电解槽耦合,实现风光电力联网而不并网,从而避免波动性风光电力对电网的冲击。从这一过程来看,非并网风光电力制氢中的波动电源仅需进行简单变压及整流处理,通过变压器将电压调整到所需电压、将交流电整流为直流电。
非并网制氢技术是我国在相关领域中的原创技术,有助于打破波动性可再生能源的技术限制。风光电力不受上网约束,风电和光伏发电设备可进一步优化,能够显著降低成本,也可规避因并网产生的大规模风力机 / 光伏脱网事故,从而实现解决风光消纳问题与促进绿氢能源行业发展并举。
五、风光波动电源电解水制氢产业应用态势
(一)风电耦合制氢现状及经济性
目前,国内外研究的重点是并网型风电制氢在不同应用场景下的适用性和经济性。并网型风电制氢可有效消纳弃风(相应弃风率从35.8%降至7.5%),重点研究方向包括系统的配置优化、调控策略仿真,主要探究功率频繁变动下电压、电流、温度、压力、电极材料电化学特性等对制氢装置运行的影响,优化运行和启停控制策略,延长电解槽使用寿命。在风电耦合制氢中,海上风电制氢是未来的主流形式之一。世界范围内已公布的电解水制氢项目,储备总规模的一半来自海上风电制氢;德国、荷兰等国家均有百万千瓦级的海上风电制氢项目规划。我国海上风电发展异军突起,2021年新增装机容量超过1.69×107 kW,累计装机容量超过2.638×107 kW;预计到2030年,海上风电累计并网装机容量接近100 GW,平准化度电成本将比目前年水平下降40%以上。
近年来,国外陆续建成了20多个风电耦合制氢示范项目。在欧洲,重点研究方向有:探究氢能在电网中的储能优势,提高风能利用率、发电品质和电网稳定性;开展“电转气”项目,通过氢储能提高可再生能源占比;开发海上风电制氢项目,如荷兰将在2030年建成3~4 GW海上风电制氢工程,2040年可达10 GW装机容量、8×105 t制氢规模。我国风电制氢研究起步较晚,在关键技术、设计运行经验方面尚有诸多不足,在风电制氢系统的优化设计、制氢系统运行及优化策略、全生命周期技术经济性评价等方面表现得尤为突出。
与传统制氢方式相比,电解是决定风电制氢经济性的关键因素。电解水制氢成本70%源自电价,按照目前电价计算,风电制氢成本是传统制氢的2~3倍。当度电成本控制在0.25元时,风电制氢成本与传统制氢成本持平;若电价走低则具备经济性优势。
(二)光伏发电耦合制氢现状及经济性
光伏发电耦合制氢是可再生能源制氢的另一类主要途径。2022年,世界光伏新增装机量为142.8 GW,预计2023年全球光伏新增装机将为230 GW。目前,全球氢气需求量约为6×107 t/a,若全部制氢来自光伏发电,则每年需新增约装机900 GW。可见,光伏发电制氢发展空间巨大。
当前,国内外均积极开展光伏发电制氢项目(见表3)。多数光伏制氢项目属于并网型,部分可实现完全离网、无人值守、智能监控制氢。我国光伏发电制氢发展迅猛,内蒙古、山西、甘肃、吉林等省份是相关示范项目的主要建设地。例如,2023年8月新疆库车绿氢示范项目全面建成投产,是我国规模最大的光伏发电直接制绿氢项目,产氢量为2×104 t/a。
光伏发电制氢产业化的发展瓶颈在于成本过高,光伏度电成本的下降将大幅降低电解水制氢的成本。据测算,2025年光伏新增装机发电的度电成本将低于0.3元,届时光伏发电制氢有望趋于平价化;在光资源充沛的地区,光伏发电制氢的度电成本甚至有望降至0.15元,将进一步推动制氢成本走低。到2035年、2050年,新增光伏发电的度电成本将分别为0.2元、0.13元,全面实现良好的经济性。
根据近期研究预测和“中国2030年‘可再生氢100’发展路线图”,我国陆上风电、光伏发电的电解水制氢已接近平价化。然而,PEM电解水制氢设备要比碱性电解槽高5倍以上,平准化制氢成本高40%左右。为此,未来发展PEM电解槽制氢的关键驱动因素即在降低设备制造和运行成本。随着制氢产业的规模化、相应核心技术的不断突破,PEM电解槽成本有望降低50%以上,平准化氢气成本有望降低20%。
表3 国内外风光制氢项目
六、波动性负荷耦合制氢发展建议
当前,在国家重点研发计划等渠道的支持下,我国学术界和产业界围绕风光电解水制氢,通过关键技术突破和核心装备应用,基本构建了风光耦合制氢全链条技术体系。然而,在离网或非并网条件下风光耦合PEM电解水制氢依然面临技术、成本、制度等挑战,突出表现在电解槽效率较低、成本过高、核心技术成熟度低,技术标准缺乏,产业链发展制度保障不强。为此,面向风光等波动性负荷耦合制氢领域的未来挑战,提出技术、成本、政策布局等方面的发展建议。
(一)深化研究风光波动电源下高效电解池的基础科学问题和核心部件
风光电力负荷存在固有的波动性,模型预测和波动模式未能标准化,潜在的基础科学问题复杂而关键。商业化应用的前提之一即掌握风光波动电源下电解池耐久性、性能衰减机理及相关标准。电解池的运行和启停特性、部件衰减机理和模拟测试方法,各要素之间的作用关系等仍不清晰,有待深化研究。
目前,对电解池各部件的稳定性和衰减机制有了较清晰的认知,针对单一部件或者电解池整体性能衰减特性的研究已有展开,形成了初步的应对策略。未来需进一步加强相关电解槽设计和衰减评估标准的制定。面向风光电力波动电源,进一步提高部件的热学、力学、电化学性能,设计和开发关键催化材料,以切实增强电解槽的稳定性和服役寿命。在此基础上优化风光-荷-氢相协调的电解氢系统配置,特别是借助人工智能等手段对当前模型进行进一步优化。
(二)进一步降低制氢成本
降低电解槽制造成本,关键在于非贵金属催化剂的开发与应用。遴选Ni、Co等过渡金属催化材料,Fe等廉价金属材料应用于电解槽并明确性能,是大幅降低电解槽制造成本的重要方向。按照技术规划目标,未来可通过卷对卷直接涂布、丝网印刷、喷涂等方法构建膜电极,将催化剂载量从目前的1 mg/cm2逐步降低到0.125 mg/cm2。
虽然目前大部分地区的电力仍然难以支持实现绿氢平价化,但部分风光资源丰富地区的度电成本可低至0.3元,已接近或可局部实现绿氢平价化。随着风光发电装机总量的逐年增长,电价成本在不久的将来可支撑风光耦合制氢的商业化。推动风光制氢一体化,实现宽范围、低成本风光制氢工程的规模化发展,进一步延长制氢工作时长、降低综合运营成本。
(三)开展风光耦合制氢优化布局和制度保障研究
合理布局产业规模是风光耦合制氢发展的关键因素,形成体量化的产业集群对于降低风光耦合制氢成本、提高制氢技术成熟度、加快实现商业化至关重要。通过综合布局吸引社会资本、鼓励技术突破、完善产业链水平,加强技术、资本与产业的融合,全面提升风光耦合制氢的市场竞争力。
我国已将风光耦合制氢列为战略性新兴产业之一,但随着相关技术的成熟和商业化,推动氢气规范使用和生产等仍需积极的政策引导。在产业化发展的不同阶段,及时制定或优化调整风电耦合制氢政策,驱动可再生能源制氢产业的高质量发展。
|